INFRARED AND RAMAN INVESTIGATION OF THE STRUCTURAL BEHAVIOUR OF THE $s_2o_3^{=}$ ion in cadmium thiosulfate dihydrate, $cds_2o_3.2h_2o_3$ (1)

Zélimir GABELICA

Facultés Universitaires de Namur, Département de Chimie, Laboratoire de Catalyse, 61, rue de Bruxelles, B-5000 -Namur - Belgium

Solid state infrared and Raman spectra of cadmium thiosulfate dihydrate, ${\rm CdS}_2{\rm O}_3.2{\rm H}_2{\rm O}$, have been examined. The splittings and the shifts of the internal frequencies of the coordinated S_2^{0} anions were found to characterize bridging thiosulfate groups binding two cadmium ions through the external sulfur atom.

We have recently synthetised a great number of new compounds containing thiosulfate anion, cadmium and either another metallic ion or an organic ligand (2). Infrared and Raman investigations revealed that, in such compounds, the $\mathbf{S}_2\mathbf{0}_3$ groups can bind cadmium ions either as bridging ligands (I), monodentate through terminal sulfur (II) or as bidentate with bridging (III) or chelate (IV) framework (Fig. 1).

Figure 1

We report here the solid state infrared and Raman spectra of the simpliest compound containing cadmium and thiosulfate ions, $CdS_2O_3.2H_2O$, in order to throw some light on the structural behaviour of the S_2O_3 entity towards cadmium in absence of perturbing effects due to other host ions or ligands.

EXPERIMENTAL

 ${\rm CdS}_2{\rm O}_3.2{\rm H}_2{\rm O}$ has been synthesized as described earlier $^{(3)}$. Infrared spectra in the range 4000-200 cm have been measured using a Beckman IR-12 spectrometer. As the samples undergo reaction when alkali halide disks are used or even when pressed into corresponding pellets $^{(4)}$, Nujol mulls between $\mathrm{Tl}_{2}\mathrm{BrI}$ plates have been used. Raman spectra in the range 4000-20 cm $^{-1}$ were measured directly on crystalline powders in a glass capillary using a Coderg PHO monochromator equipped with a 50 mw Spectra Physics He-Ne Laser.

RESULTS AND DISCUSSION

In a previous study the vibrational behaviour of the $S_2O_3^{-}$ ion in a number of solid inorganic thiosulfates involving various metal- $S_20_3^{=}$ associations has been examined in the light of their known or proposed structures $^{(2,5)}$. A systematic study of the splittings and the shifts of the six thiosulfate fundamental frequencies with respect to those for the free unperturbed anion lead to a consistent set of spectra-structure correlations. General criteria could be established and used to make clear the structural behaviour of the $^{5}2^{0}_{3}$ entity by means of infrared and Raman spectroscopy for compounds not yet submitted to a X-ray crystallographic study.

These criteria are used here to elucidate the coordination of the thiosulfate ion in ${\rm CdS}_2{\rm O}_3.2{\rm H}_2{\rm O}$.

The geometry changes of the $\rm S_2O_3$ pyramid as well as the SO and SS bond order perturbations due to thiosulfate-metal interactions in the crystal will considerably influence the vibrational spectra of the coordinated anions. In the 300-1250 cm⁻¹ region, nine i.r. bands and Raman peaks are observed (Table I).

Table I: Infrared and Raman fro	requencies (cm ⁻¹) for ($CdS_{2}O_{3}.2H_{2}O$ and	their assignments
---------------------------------	--------------------------------------	----------------------------	-------------------

20	from C 0=(10)	Aggiannanta		
Raman	11ee 5 ₂ 03	Assignments		
95 m 127 m 153 w 180 w 209 w 297 w		lattice modes including ν(Cd-S) and ν(Cd-S-Cd)		
330 w 355 m	339	$\rho(SO_3) = v_6(E)$		
424 vs	448	$v(SS) = v_3(A_1)$		
527 m 550 w	538	$\delta_{as}(SO) = v_5(E)$		
628 m	671	$\delta_{\text{sym}}(SO) = v_2(A_1)$		
1017 vs	999	$v_{\text{sym}}(SO) = v_{1}(A_{1})$		
1150 m 1210 m	1126	$v_{as}(SO) = v_4(E)$		
	95 m 127 m 153 w 180 w 209 w 297 w 330 w 355 m 424 vs 527 m 550 w 628 m 1017 vs	Free S ₂ 0 ³ (10) Raman 95 m 127 m 153 w 180 w 209 w 297 w 330 w 355 m 424 vs 448 527 m 550 w 628 m 671 1017 vs 999 1150 m		

The three degenerate (E) modes of the free ion are found split into doublets indicating that the S_2O_3 C_{3v} point group symmetry has been lowered (C_s or C_1).

This splitting can result either from a $\mathrm{S}_2\mathrm{O}_3$ distortion upon coordination or from a local low symmetry field created by the surrounding ions (site splitting effect). When both effects are present the former is always predominant. On the other hand, we have found that a briging-type coordination generally causes a greater distortion of the $\mathrm{S}_2\mathrm{O}_3$ geometry than a simple sulfur to metal bond. The magnitude of the distortion can be evaluated by the frequency separation (Δ) between the two doublets. In the case of $\mathrm{CdS}_2\mathrm{O}_3.2\mathrm{H}_2\mathrm{O}$ an important splitting of the degenerate modes is observed (Table I) and the Δ values measured (Table II) tend to support a bridging thiosulfate coordination.

Cadmium ion (soft acid) is expected to interact with S_2O_3 entities through the terminal sulfur atom (soft base) rather than through the oxygen atoms which have a hard basic character. The resulting SO and SS bond order perturbations will then cause a shift of the SO symmetric and asymetric stretching modes towards higher frequencies together with a decrease of v(SS) frequency. Any Cd-oxygen interaction is expected to cause the same frequency shifts in the opposite direction while a mixed O and S bidentate coordination (Schemes III and IV) should be characterized by a quite different and typical vibrational pattern (2,6).

Coordination	Characteristic frequency position (cm ⁻¹) for some normal vibrations			Magnitude of the splittings of the degenerate modes (cm ⁻¹)			
	vss	ν _{sym} (SO)	ν _{as} (SO)	ν(SO)aver.	Δ٧4	Δν ₅	^{Δν} 6
Free $S_2O_3^{=}$ (10)	448	999	1126	1084	-	-	_
Cd-S-SO ₃ (2) monodentate	425-435	1005-1012	1150-1170	1105-1125	20-50	15-25	<20
Cd s-so ₃ (2) Cd bridging	<425	1015-1028	1170-1200	>1125	45-80	20-40	>20
IR IIR	425	1019	1187	1132	50	26	23
CdS ₂ O ₄ .2H ₂ O R	423	1017	1185	1130	60	23	25

Table II

The infrared and Raman frequencies of the thiosulfate ions involved in $CdS_2O_3.2H_2O$ are reported in Table I and compared with the position of the fundamental frequencies arising from the free $S_2O_3^=$ ion. The important shifts observed for $v_{sym}(SO)$, $v_{as}(SO)$ and v(SS) clearly suggest a cadmium-sulfur association.

We have also shown ⁽²⁾ that the magnitude of the shifts mentioned above could prove a useful criterion for distinguishing between a sulfur bridging (Scheme I) and a sulfur-monodentate (Scheme II) thiosulfate groups. Two electron-acceptor cadmium ions will perturb the SO and SS bond orders in a larger extent than only one ion and the corresponding shifts of the $\nu_{\rm sym}({\rm SO})$, $\nu_{\rm as}({\rm SO})$ and $\nu({\rm SS})$ modes are expected to be more pronounced in the former case.

Typical positions of the $v_{\rm sym}(S0)$, $v_{\rm as}(S0)$ and v(SS) vibrations, the values of the average SO stretching frequency calculated using the Lehman's (7) formula :

$$v(S0) \text{ av.} = 1/3 [v_{sym}(S0) + 2 v_{as}(S0)]$$

for both bridging and S-monodentate S_2O_3 ions associated to cadmium are given in Table II and compared with the same parameters obtained in the case of $CdS_2O_3.2H_2O$.

All the values do fall within the frequency range defined for a bridging thiosulfate group and confirm the preliminary conclusions derived from the Δ values.

For a sulfur atom interacting with two different cadmium ions in the bridging position, two possible schematic structures for $CdS_2O_3.2H_2O$ could be proposed:

- (i) cadmium thiosulfate is a simple salt. The Cd atom is then tetrahedrally surrounded by 2S and 2H₂O, the whole framework consisting in a polymeric chain (Scheme V, Fig. 2).
- (ii) cadmium thiosulfate is an autocomplex salt of the type $\operatorname{Cd}[\operatorname{Cd}(S_2O_3)_2(H_2O)_2]$. $\operatorname{2H}_2O$ (cadmium bis-aquo-bis-thiosulfato-cadmate dihydrate). The structure of the $[\operatorname{Cd}(S_2O_3)_2(H_2O)_2]^{\top}$ anions will consist in polymeric chains with the Cd atoms octahedrally surrounded by 4S and $\operatorname{2H}_2O$ (Scheme VI, Fig. 2).

Figure 2

Although several authors have mentioned previously the possible existence of bridging $^{5}2^{0}_{3}$ groups in solution containing soft acidic cations such as cadmium $^{(8)}$ or both cadmium and mercury $^{(9)}$ the present work reports the first example of solely bridging thiosulfato groups coordinated to cadmium ions in the solid state.

An X-ray crystallographic study of $CdS_2O_3.2H_2O$ is at present under investigation.

REFERENCES AND NOTE

- (1) Part X of "Compounds containing cadmium and thiosulfate ions". Part IX appeared in: Z. Gabelica, Bull. Acad. Roy. Belg. (Classe Sci.), 63, 460 (1977); Chem. Abstr., 88, 130578 J (1978).
- (2) Z. Gabelica, Doctoral thesis, Liège, 1975. Results to be published.
- (3) R. Delhez and Z. Gabelica, Ann. Soc. Sci. Brux., <u>83</u>, 399 (1969); Chem. Abstr., <u>73</u>, 20899 K (1970).
- (4) Z. Gabelica, Bull. Soc. Chim. Belg., <u>86</u>, 857 (1977).
- (5) Z. Gabelica, Spectrochim. Acta, 32A, 327 and 337 (1976) and references therein.
- (6) Z. Gabelica, C.R. Acad. Sci. Paris, 279C, 509 (1974).
- (7) W.J. Lehman, J. Mol. Spectrosc., 7, 261 (1961).
- (8) A.C. Norris, R.J. Soilleux and R.K. Cosgrove, Inorg. Nucl. Chem. Lett., <u>8</u>, 293 (1972).
- (9) D.J. Barclay and F.C. Anson, J. Electrochem Soc., 116, 438 (1969).
- (10) V.A. Meeuwsen and G. Heinze, Z. Anorg. Allg. Chem., 269, 86 (1952).

(Received September 25, 1979)